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Abstract

CA rules can be classified automatically for a spectrum of ordered, com-
plex and chaotic dynamics, by a measure of the variance of input-entropy
over time. Rules that support interacting gliders and related complex
dynamics can be identified, giving an unlimited source for further study.
The distribution of rule classes in rule-space can be shown. A byproduct
of the method allows the automatic “filtering” of CA space-time patterns
to show up gliders and related emergent configurations more clearly.

The classification seems to correspond to our subjective judgment of
space-time dynamics. There are also approximate correlations with global
measures on convergence in attractor basins, characterized by the distri-
bution of in-degree sizes in their branching structure, and to the rule
parameter, Z. Based on computer experiments using the software Dis-
crete Dynamics Lab (DDLab)[22], this paper explains the methods and
presents results for 1d CA.

1 Introduction

Cellular automata (CA) are a much studied class of discrete dynamical network
that support emergent behaviour resulting from homogeneous, local, short range
interactions. They are applied in many overlapping areas; to model processes in
physical, chemical and biological systems such as fluid dynamics and reaction-
diffusion[19, 12]; to study self-organization and self-reproduction by the emer-
gence of coherent interacting structures[9, 13]; in mathematics and computation
where the systems themselves are the focus of interest [1, 6, 14]. CA dynamics
are driven by complex feedback webs that are difficult to treat analytically ex-
cept for special cases. Understanding these systems depends to a large extent
on computer experiments, where a key notion is that state space is connected
into basins of attraction[20].

The ability of CA to support the emergence of coherent interacting long-
lived configurations provides a striking example of self-organization in a simple
system, and has consequently become the focus of particular study. This sort of
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behaviour is characterized by interacting “gliders” (after Conway’s 2d game-of-
Life[3]). Glider dynamics can be seen from an number of overlapping perspec-
tives: Wolfram’s complex (or class 4) behaviour[18], phase transitions between
order and chaos[10], computation[8, 18], and discrete analogues of Prigogine’s
far-from-equilibrium dissipative structures[11].

Figure 1: The space-time pattern of a 1d complex CA with interacting gliders. 308
time-steps from a random initial state. System size n=700, Neighbourhood size k=7,
rule (hex) = 3b 46 9c 0e e4 f7 fa 96 f9 3b 4d 32 b0 9e d0 e0. Cells are colored/shaded
according to neighbourhood look-up instead of the value. Space is across and time
down the page. The basin of attraction field for this rule for n=16 is shown figure 6.

Because glider dynamics is relatively rare in CA rule spaces, their study has
relied on the few known complex rules in 1d CA. A more general theory would
benefit from a great many examples. Methods are described to classify rule-
space automatically, for a spectrum of ordered, complex and chaotic dynamics,
by a measure of the variance of input-entropy over time. This allows screening
out CA rules that support glider (and related) dynamics, giving an unlimited
source for further study. The resulting classification, seems to correspond to our
subjective judgment of space-time dynamics. The method also gives statistical
data on the distribution of rule classes in rule space, for varying neighbourhood
sizes. Another useful byproduct allows automatic “filtering” of the space-time
patterns of any CA to show up gliders and related emergent configurations more
clearly.

The quality of dynamical behaviour of CA, from ordered to chaotic1, is
approximately reflected by convergence in basins of attraction and sub-trees
(referred to collectively as attractor basins), in terms of their characteristic in-
degree, which influences the length of transients and attractor cycles. The in-
degree of a state is its number of pre-images (predecessors). Bushy subtrees with
high in-degree imply high convergence and order. Sparsely branching subtrees
imply low convergence and chaos.

A simple convergence measure is G-density, the density of garden-of-Eden
states (those without predecessors) and the rate of increase of G-density with

1“chaos” is used here by analogy only to its meaning in chaos theory, although there are
many common properties, for example sensitivity to initial conditions.
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system size. For order these measures are relatively high, for chaos relatively
low. A more general measure is the distribution of in-degree sizes. Generat-
ing attractor basins and making these measures relies on a reverse algorithm
that computes predecessors directly, without exhaustive testing. A consequence
of the reverse algorithm is the rule parameter, Z, which predicts convergence
by giving the probability that the next unknown cell in a partial pre-image
is uniquely determined. This probability is calculated from the rule’s lookup
table[20].

This paper defines the class of 1d CA in question, rules, trajectories, basins
of attraction, and how these are represented, and the methods for computing
pre-images and the Z parameter. The characteristics of “gliders”, the methods
for filtering space-time patterns, and for automatically classifying rule-space
are described, and results presented of the classified rule samples. Preliminary
results are presented relating local measures (on trajectories), global measures
(on attractor basins), and the Z parameter. The reasons why correlations are
to be expected are discussed. The work is based on computer experiments using
the author’s software Discrete Dynamics Lab (DDLab)[22].

2 1d CA

The extra asymmetric cell
in even k is on the right.
The wiring is shown be-
tween two time-steps.

Figure 2: 1d neighbourhood templates defined in DDLab. k=0-13. Another common
notation defines the radius r of a symmetric neighbourhood, r = (k − 1)/2.

A CA is a regular network of elements (cells), taking inputs from their nearest
(and next nearest etc) neighbours according to a fixed neighbourhood template,
which defines the network geometry and the periodic boundary conditions. Cells
synchronously update their cell-state according to a homogeneous logical func-
tion on their inputs. The cell-state ranges over a discrete alphabet, in this paper
just a binary alphabet (0 or 1) is considered, and the number of cells is finite,
with periodic boundary conditions. Figure 2 shows neighbourhood templates
for 1d CA as applied in DDLab (see [25] for 2d and 3d templates).

A CA neighborhood of size k has 2k permutations of values. The most
general expression of the Boolean function or rule is a lookup table (the rule-

table) with 2k entries, giving 22
k

possible rules. Sub-categories of rules can also
be expressed as simple algorithms, concise AND/OR/NOT logical statements,
totalistic rules[17] or threshold functions. By convention[17] the rule table is
arranged in descending order of the values of neighborhoods, and the resulting
bit string converts to the decimal or hexadecimal rule number. For example,
the k=3 rule-table for rule 30,
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7 6 5 4 3 2 1 0 . . . neighbourhoods, decimal
111 110 101 100 011 010 001 000 . . . neighbourhoods, binary
0 0 0 1 1 1 1 0 . . . outputs, the rule table

The rule-table for other k values are set out in a corresponding way. k ≥ 4
rules are referred to by their hexadecimal rule numbers. k ≤ 3 rules are usually
referred to by their more familiar decimal rule numbers. The behaviour space

of CA depends on the size of rule-space, 22
k

, though rule symmetries effectively
reduce this number. For example, the 22
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= 256 rules in k = 3 rule-space reduce
to 88 equivalence classes[20].

3 Trajectories and space-time patterns

Figure 3: Space-time patterns of a CA (n=24, k = 3, rule 90). 24 time-steps from an
initial state with a single central 1. Two alternative presentations are shown. Left,
cells by value, light=0 dark=1. Right, cells colored (or shaded) according to their
look-up neighbourhood .

Figure 4: Space-time patterns from the same initial state showing interacting glid-
ers, which are embedded in a complicated background. Left: cells by value. Right
cells by neighbourhood lookup, with the background filtered. The k=3 rule 54 was
transformed[20] to its equivalent k=5 rule (hex) 0f3c0f3c, n=150.

A state of a CA is the pattern of 0s and 1s at a given time-step. A trajectory
is the sequence of states at successive time-steps, the system’s local dynamics.
Examples are shown in figures 1, 3, 4 and elsewhere. As well as showing cells as
light(0) or dark(1), an alternative presentation shows cells in colors (or shades)
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according to their look-up neighbourhood (figure 3). The most frequently occur-
ring colors can be progressively filtered to show up gliders and other space-time
structures as in figure 4, done interactively, on-the-fly, in DDLab for any CA.
This is an alternative method to the “computational mechanics” approach[8].

4 Basins of Attraction

For a network size n, an example of one of its states B might be
1010 . . . 0110. State-space is made up of all 2n states, the space of
all possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and
A is a pre-image of B, according to the dynamics of the network.

The state B may have other pre-images besides A, the total number
is the in-degree. The pre-image states may have their own pre-
images or none. States without pre-images are known as garden-

of-Eden states.

Any trajectory must sooner or later encounter a state that occurred
previously - it has entered an attractor cycle. The trajectory lead-
ing to the attractor is a transient. The period of the attractor is
the number of states in its cycle, which may be only just one - a
point attractor.

Take a state on the attractor, find its pre-images (excluding the
pre-image on the attractor). Now find the pre-images of each pre-
image, and so on, until all garden-of-Eden states are reached. The
graph of linked states is a transient tree rooted on the attractor
state. Part of the transient tree is a subtree defined by its root.

Construct each transient tree (if any) from each attractor state.
The complete graph is the basin of attraction. Some basins of
attraction have no transient trees, just the bare “attractor”.

Now find every attractor cycle in state-space and construct its
basin of attraction. This is the basin of attraction field containing
all 2n states in state-space, but now linked according to the dy-
namics of the network. Each discrete dynamical network imposes
a particular basin of attraction field on state-space.

Figure 5: State space and basins of attraction.

The idea of basins of attraction in discrete dynamical networks (which includes
CA) is summarized in figure 5. Given an invariant network architecture and the
absence of noise, a CA is deterministic, and follows a unique trajectory from any
initial state. When a state that occurred previously is re-visited, which must
happen in a finite state-space, the dynamics become trapped in a perpetual
cycle of repetitions defining the attractor (state cycle) and its period (minimum
one, a stable point). The approach is analogous to Poincaré’s “phase portrait”
in continuous dynamics.
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These systems are dissipative. A state may have multiple “pre-images”
(predecessors), or none, but just one successor. The number of pre-images
is the state’s “in-degree”. In-degrees greater than one require that transient
states exist outside the attractor. Tracing connections backwards to successive
pre-images of transient states reveals a tree-like topology where the “leaves”
are states without pre-images, known as garden-of-Eden states. Conversely, the
flow in state-space is convergent. The set of transient trees and the attractor on
which they are rooted make up the basin of attraction. Local dynamics connects
state-space into a number of basins, the basin of attraction field, representing
the system’s global dynamics. An example is shown in figures 6 and 7.

Figure 6: The basin of attraction field of the complex CA rule in figure 1. n=16, k=7.
The 216 = 65536 states in state space are connected into 89 basins of attraction. The
11 non-equivalent basins are shown, with symmetries characteristic of CA[20]. The
period (p), percentage of state space in each basin type(s), and number of each type
(t), of the biggest three basins (top row), are as follows: (1) p=1 s=15.7% t=1. (2) p=5
s=55.8% t=16. (3) p=192 s=22.9% t=1. The field’s G-density=0.451, λratio=0.938,
Z=0.578.

5 Constructing and portraying attractor basins

To construct a basin of attraction containing a particular state, the network
is iterated forward from the state until a repeat is found and the attractor
identified. The transient tree (if it exists) rooted on each attractor state is con-
structed in turn. Using the reverse algorithms, the pre-images of the attractor
state are computed, ignoring the pre-image lying on the attractor itself, then
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Figure 7: A detail of the 2nd basin of attraction in figure 6. The states are shown as
4 × 4 bit patterns.

the pre-images of pre-images, until all garden-of-Eden states have been reached.
Just a subtree may be constructed rooted on a state. Because a state chosen

at random is very likely to be a garden-of-Eden state, it is usually necessary to
run the network forward by at least one time-step, and use the state reached as
the subtree root. Running forward by more steps will reach a state deeper in
the subtree so allow a larger subtree to be constructed.

A considerable speedup in computation is achieved by taking advantage of
equivalent dynamics because of rotated states, and “rotational symmetry”[20],
a property of the regularity of CA and periodic boundary conditions, resulting
in equivalent subtrees and basins.

Attractor basins are portrayed as state transition graphs, vertices (nodes)
connected by directed edges. States are represented by nodes, by a bit pattern
in 1d or 2d (as in figure 7), or as the decimal or hex value of the state. In
the graphic convention[20, 22], the length of edges decreases with distance away
from the attractor, and the diameter of the attractor cycle approaches an upper
limit with increasing period. The direction of edges (i.e. time) is inward from
garden-of-Eden states to the attractor, and then clockwise around the attractor
cycle, as shown in figure 7. Typically, the vast majority of states in a basin of
attraction lie on transient trees outside the attractor, and the vast majority of
these states are garden-of-Eden states.

6 Computing Pre-images

CA attractor basins are constructed with an algorithm that directly computes
the pre-images of network states[20, 23]. The network is run backwards in
time, though backward trajectories usually diverge. The reverse algorithm takes
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advantage of the regularity of connections in 1d CA. It also works for mixed
rule networks. Other reverse algorithms2 and methods designed for more general
discrete dynamical networks can also be applied to CA. Provided k � n, the CA
reverse algorithm is in general orders of magnitude faster than the brute force
method, constructing an exhaustive map resulting from network dynamics[25].

Figure 8: The attractor fre-
quency histogram for the com-
plex k=5 rule 6c1e53a8, n=50.
The rule also appears in figures
13 and 23. Max attractor pe-
riod=150, min=4, max average
transient=681, min=6.

Some basic information on attractor basin structure can be found by sta-
tistical methods, first applied by Walker[15], as shown in figure 6, and are ap-
propriate for large networks. Trajectories are run forward from many random
initial states looking for a repeat in the network pattern to identify the range
of attractor types reached. The frequency of reaching a given attractor type in-
dicates the relative size of the basin of attraction, and other data are extracted
such as the number of basins, and the length of transients and attractor cycles.
These various methods are implemented in DDLab

6.1 The CA reverse algorithm

Consider a 1d CA size n (indexed n − 1 . . . 0) and neighbourhood k. To find
the all pre-images of a state A, let P be a “partial pre-image” where at least
k − 1 bits (on the left) up to and including Pi, are known. Now find the next
unknown bit to the right, Pi−1, consistent with the rule-table. (• indicates
known, ? unknown, bits),

Pi+1 Pi Pi−1

. . . partial pre-image P . . . • • ? compare the outputs of Pi+1, Pi, ?
• with each other and with Ai

. . . known state A . . . Ai

If k = 3 (for example), the bitstring Pi+1, Pi, ? corresponds to two neigh-
bourhood entries in the rule-table. When their outputs, T1 and T2, are com-
pared with each other and with Ai there are three possible consequences. The
permutation is either deterministic, ambiguous or forbidden.

1. deterministic: if T1 6= T2, then Pi−1 is uniquely determined, as there is
only one valid neighbourhood with the output Ai.

2An alternative algorithm is required for random Boolean networks (RBN) with their non-
local connections and possibly mixed k. This algorithm also applies to CA of any dimension or
geometry, as CA are just a sub-class of RBN. A more general exhaustive method also applies
to random directed maps[25].

8



2. ambiguous: if T1 = T2 = Ai, then both 0 and 1 are valid solutions for
Pi−1. The partial pre-image must be duplicated, with Pi−1 = 0 in one
version and Pi−1 = 1 in the other.

3. forbidden: if (T1 = T2) 6= Ai, then Pi−1 has no valid solution.

If forbidden (3) the partial pre-image P is rejected. If deterministic or am-
biguous (1 or 2) the procedure is continued to find the next unknown bit to the
right. However, in the ambiguous case (2), both alternative partial pre-images
must be continued. In practice one is assigned to a stack of partial pre-images
to be continued at a later stage. As the procedure is re-applied to determine
each successive unknown bit towards the right, each incidence of ambiguous
permutations will require another partial pre-image to be added to the stack,
though various refinements limit its growth.

The procedure is continued to the right to overlap the assumed start string,
to check if periodic boundary conditions are satisfied; if so the the pre-image
is valid. The procedure is re-applied to each partial pre-image taken from the
partial pre-image stack, starting at the first unknown cell. Each time an am-
biguous permutation (2) occurs, a new partial pre-image must be added to the
stack, but the stack will eventually be exhausted, at which point all the valid
pre-images containing the assumed start string will have been found. The pro-
cedure is applied for 2k−1 start strings, assuming the different possible values
of the first k − 1 bits. The reverse algorithm is applied from left to right in
DDLab, but is equally valid when applied from right to left.

6.2 The Z parameter

A by product of the CA reverse algorithm is the probability of the next unknown
bit being deterministic (section 6.1(1)). Two versions of this probability are
calculated from the rule-table. Zleft for the reverse algorithm applied from
left to right, and Zright for the converse. The Z parameter is the greater of
these values. For Z=1 it can be shown[20] that for any system size n, the
maximum in-degree, Imax ≤ 2k−1, because the next unknown bit is always
uniquely determined, so the assumed start string of length k − 1 may generate
at most 2k−1 pre-images. If only one of Zleft or Zright=1, Imax < 2k−1, because
at least one assumed start string must be forbidden (section 6.1(3)). At the
other extreme, for Z=0, all state space converges on the state all-0s or all-1s in
one step. For high Z, low in-degree (relative to system size n) is expected in
attractor basins, growing at a slow rate with respect to n. Conversely, for low
Z, high relative in-degree is expected growing quickly with respect to n. High Z
predicts low convergence and chaos, low Z predicts high convergence and order.

The 2k neighborhoods of size k, each indexed k−1 . . .0, each have an output
T (0 or 1) which makes up the rule-table (section 2), and may be expressed as
ak−1, ak−2, . . . a1, a0 → T . To calculate Zleft from the rule table, let nk be the
count of rule-table entries belonging to deterministic pairs, such that,

ak−1, ak−2, . . . a1, 0 → T and ak−1, ak−2, . . . a1, 1 → T (not T )
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The probability that the next bit is determined because of the above is given
by, Rk = nk/2k. This is a first approximation of Zleft.

Let nk−1 be the count of rule-table entries belonging to deterministic 4-tuples
(where “?” may be 0 or 1), such that,

ak−1, ak−2, . . . a2, 0, ? → T and ak−1, ak−2, . . . a2, 1, ? → T
The probability that the next bit is determined because of the above is given

by, Rk−1 = nk−1/2k. This count is repeated if necessary for deterministic
8-tuples where Rk−2 = nk−2/2k, 16-tuples, 32-tuples, . . . up to the special
case of just one 2k-tuple which occupies the whole rule-table. These are are
independent non-exclusive probabilities that the next bit is determined. The
union of the probabilities Rk ∪Rk−1∪Rk−2 . . . = Zleft, is given by the following
expression (the order of the probabilities makes no difference to the result),

Zleft = Rk + Rk−1(1 − Rk) + Rk−2(1 − Rk + Rk−1(1 − Rk))) + Rk−3(1 −

(Rk−2(1 − Rk + Rk−1(1 − Rk))))) + · · · which simplifies to,
Zleft = Rk +Rk−1(1−Rk)+Rk−2(1−Rk−1)(1−Rk)+Rk−3(1−Rk−2)(1−

Rk−1)(1 − Rk) + · · ·

and may be expressed as3 Zleft = Rk +
∑k−1

i=1
Rk−1

(

∏k

j=k−i+1
(1 − Rj)

)

where Ri = ni/2k, and ni = the count of rule-table entries belonging to de-
terministic 2k−i-tuples. A converse procedure gives Zright, and the Z parameter
= the greater of Zleft and Zright. Examples are given in [20, 23].

Figure 9: G-density against both λratio and Z for the set of k=7 totalistic rules,
n=16, for Z ≥ 0.25. The complete basin of attraction field was generated for each rule
and garden-of-Eden states counted.

By virtue of being a convergence parameter, Z is also an order-chaos pa-
rameter varying from 0(order) - 1(chaos). Z can be compared with Langton’s
well known λ parameter[10]. λ is an order-chaos parameter for CA which may
have values greater than binary, and measures the density of “non-quiescent”
outputs in a rule-table, so for just binary CA, λ = c/2k where c=the count of 1s

3Acknowledgment and thanks to Guillaume Barreau and Phil Husbands at COGS, Univ.
of Sussex, for deriving this expression.
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in a rule-table on k inputs. λ varies between 0(order)-0.5(chaos)-1(order). To
allow Z and λ to be compared, a normalized version of binary λ is defined[20],
λratio = 2 × cmin/2k where cmin is the count of 0s or 1s in the rule-table,
whichever is less. λratio must be ≥ Z, and varies from 0(order)-1(chaos) just
as Z.

Plots of the G-density against both λratio and Z for the 256 k=7 totalistic
rules4, showing the discrepancies as well as similarities, are shown in figure 9.
Points plotted in the top right corner of the λratio graph represent λratio values
that do not correspond to behaviour as expected.

7 Gliders in 1d CA

Figure 10: Interacting gliders with various velocities and backgrounds. 127 time-steps.
The k=5 rule numbers are shown in hex.

A large body of literature is devoted the study space-time patterns in CA.
“Glider” or “particle” dynamics, where coherent configurations emerge and in-
teract, provide a striking example of self-organization in a simple system. Glider
dynamics, and the rules that produce them, have been characterized as “com-
plex”, in contrast to ordered or chaotic, by Wolfram[16], i.e. those rules yielding
localized propagating structures interacting within long transients, where the
interactions are clearly “interesting”. Perhaps the most dramatic example is
Conway’s 2d “game-of-Life”[3], from where the term “glider” is borrowed.

The human mind is extremely adept at recognizing patterns, and identifying
those that seem complex and interesting, but it would be extremely useful to
have measures that corresponded closely to our subjective classification. An
entropy variance measure on the dynamics seems to achieve this, allowing an
unlimited source of complex rules to be found, and is further able to characterize
rule-space relative to our subjective notions of order, complexity and chaos.

Complex rules are supposed to be rare[17]. Most rules are either ordered or
chaotic (see figure 13), though ordered rules become increasingly rare for larger

4The 256 k=7 totalistic rules reduce to 136 non-equivalent rules in 72 clusters, having equal
λratio and Z[23].
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k. In k=3 rule-space the only two sets of glider rules that occur, rule 54 and 110,
and their equivalents[20](see figures 4 and 14) have been the focus of particular
study (e.g. [8]).

How a rule is placed within a notional order-complexity-chaos space has
depended largely on our subjective judgment of typical emergent space-time
patterns. Each CA rule self-organizes its patterns in a characteristic way, and
these are often recognizable, especially for small k, where a characteristic pat-
tern is apparent even when chaotic, becoming less obvious for larger k. The
characteristic pattern of different rules can be analyzed in formal language the-
ory as a “regular language” with a vocabulary made up of bit sequences and a
“grammar” made up of succession rules between sequences[18], and by a related
“computational mechanics” approach[8].

Glider dynamics corresponds to Wolfram’s complex class 4 behaviour in his
classification of CA dynamics[17]. Wolfram orders his classes according to a
specific notion of complexity; by the increasing complexity of typical space-time
patterns as measured in formal language theory[18], and draws analogies with
classical continuous dynamical systems in terms of the attractors typical of each
class. His classes are as follows:

Class CA dynamics evolves towards... Dynamical systems analogue

1. A spatially homogeneous state... Limit points.
2. A sequence of simple stable

or periodic structures................. Limit cycles
3. Chaotic aperiodic behaviour....... Chaotic (strange) attractors
4. Complicated localized

structures, some propagating...... Attractors unspecified

Langton[10] and others have argued that Wolfram’s class 4 more naturally
belongs between classes 2 and 3, at a phase transition between order and chaos.
Moreover, many ordered rules have both limit points and short limit cycles,
though one or the other may predominate, suggesting that class 1 and 2 may
usefully be combined. For these reasons the classification is readjusted as fol-
lows:

ordered (class 1-2) - complex (class 4) - chaotic (class 3)

What are the essential features of glider behaviour? Glider dynamics oc-
curs if a limited set of gliders emerge from random initial states, and if the
interactions between gliders persist for an extended time, which requires that
at least some glider collisions create new gliders. Gliders are embedded in a
uniform or periodic space-time background or “domain”, which of necessity has
simultaneously emerged. Such a regular domain may be simple, for example a
checkerboard, or a have a more complicated pattern (see figures 10-12).

Distinct chaotic domains may also occur, which cannot support geometri-
cally regular gliders, but may support “domain walls” or “particles”[4], analo-
gous to gliders. These arrise from defects within a chaotic domain (see figure
9), a boundary between two distinct chaotic domains, or between a chaotic and
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Figure 11: Examples of glider-guns. 127 time-steps. The k=5 rule numbers are shown
in hex.

regular domain. Domains may be filtered as described in section 9 to show up
gliders and domain walls more clearly.

Gliders may be regarded as solitary waves within a regular domain, and may
have the special property of solitons [2], preserving their shape and velocity after
interacting with other solitons. Glider velocity varies from 0 to a maximum
“speed of light” of r cells per time step towards the left or right, where r is the
number of cells on the left or right of the target cell. A glider configuration
that repeats at each time-step, i.e. with period one, is limited to velocities of
0,1,2,...,r per time-step. Gliders with greater periods may have intermediate
fractional velocities. A glider’s attributes are the regular domain pattern and
spatio-temporal period (on both sides of the glider), the glider’s temporal period
and velocity, its changing diameter, and the list of its repeating configurations.
The same description might be applied recursively to each sub-glider component
of a compound glider.

Collisions between two glider types often result in a third glider type (or
more). One or both gliders may survive a collision with a possible shift in
trajectory, or both gliders may be destroyed. A collision may create a temporary
chaotic phase before new gliders emerge. The outcome of a collision is sensitive
to the point of impact. A glider is often a dislocation or defect of varying width
in a domain, which is out of phase on either side of the glider, analogous to a
fracture plane in a crystal lattice. Alternatively, a glider may be seen as the zone
that reconciles two out-of-phase domains. A glider may separate two entirely
different domains, acting as the boundary, as in figure 10(d). Gliders that eject a
stream of sub-gliders at regular intervals, as in figure 11, and gliders that survive
by absorbing a regular glider stream, as in figure 10(d), are relatively common.
They are analogous to “glider-guns” and “eaters”, some of the components of
the “game-of-Life” universal computer[3]. Because a regular glider stream is
essentially the same as a regular domain, a glider-gun creates a domain, and
an eater absorbs it, so glider-guns/eaters are equivalent to a glider forming the
boundary between two domains.
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Figure 12: (a) A compound glider, (b) a glider with a period of 106 time-steps, (c) a
compound glider-gun. 168 time-steps. The k=5 rule numbers are shown in hex.

Both the period and diameter of a glider may be considerable. The diameter
may show a large variation within the period. Clearly gliders can only emerge in
systems large enough to contain them, so that the samples described in section
11 based on n=150 are biased towards finding relatively small diameter gliders.

The existence of compound gliders made up of sub-gliders colliding period-
ically may be expected in large enough systems. The example in figure 12(a)
shows a compound glider made from two independent gliders locked in a cycle
of repeating collisions. Compound gliders could combine into yet higher order
structures[9], and the process could unfold hierarchically without limit. Once
gliders have emerged, CA dynamics could, in principle, be described at a higher
level, by glider collision rules as opposed to the underlying CA rules.

8 Input-entropy

Keeping track of the frequency of rule-table look-ups (the k-block frequency, or
“look-up frequency”) in a window of time-steps, provides a measure, the variance
of input-entropy over time, which is used to classify 1d CA automatically for a
spectrum of ordered, complex and chaotic dynamics[24].

The look-up frequency can be represented by a histogram (figure 13) which
distributes the total of n×w lookups among the 2k neighbourhoods (shown as
the fraction of total lookups), where n=system size, w=the window of time-steps
defined, and k=neighbourhood size. The Shannon entropy of this frequency
distribution, the “input-entropy” S, at time-step t, for one time-step (w=1),

is given by, St = −
∑2

k

i=1

(

Qt

i

n
× log

(

Qt

i

n

))

, where Qt
i is the look-up frequency

of neighbourhood i at time t. In practice the measures are smoothed by being
taken over a moving window of time-steps (w=10 in figure 13).

Figure 13 shows typical examples of ordered, complex and chaotic dynam-
ics in 1d CA, with input-entropy plots and a snapshot of the lookup frequency
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Figure 13: Typical 1d CA space-time patterns showing ordered, complex and chaotic
dynamics (n=150, k=5). Alongside each space-time pattern is a plot of the input-
entropy (centre column), and a snapshot of the look-up frequency histogram averaged
over the last 10 time-steps. Only complex dynamics (centre row) exhibits high input-
entropy variance.

histogram alongside. In a random initial state the different k-blocks occur with
equal probability. The start entropy will be correspondingly high. The typi-
cal evolution of the input frequency histogram and input-entropy for ordered,
chaotic and complex dynamics, is discribed below.

Ordered Dynamics

In ordered dynamics the lookup frequency histogram rapidly become highly un-
balanced, with most neighbourhoods never looked at (their lookup frequency =
0). The few remaining high frequencies settle at constant or periodic values.
The entropy will settle at a low constant or periodic value, corresponding to
a fixed point or short cycle attractor. Ordered behaviour produces extremely
short and bushy transient trees with a high density of garden-of-Eden states
(G-density). Ordered rules decrease disorder and entropy.
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Complex Dynamics

In complex dynamics, the lookup frequency histogram becomes unbalanced,
with large erratic fluctuations, reflected in the entropy curve. As in ordered
behaviour, a proportion of neighbourhoods are never looked at again after the
initial sorting out phase. After an extended time the system generally settles
onto a short attractor cycle. The high frequency neighbourhoods correspond to
the emergent domain(s). The low frequency neighbourhoods to the interacting
gliders.

Glider dynamics is subject to two countervailing tendencies. On the one
hand a tendency towards order caused by the predominance of domains. But
the domains are mobile, their boundaries form the gliders. When these collide
there is a tendency toward chaos. In systems of the size considered, order or
chaos may predominate at different times causing the entropy to vary. For large
networks where colliding and non-colliding zones coexist, the entropy variance
will be reduced, to zero in the limit of infinite size.

A measure of the variability of the input-entropy curve is its variance or stan-
dard deviation5. High entropy variance for a significant number of time-steps
implies complex space-time dynamics. This includes not just glider dynamics,
but also the less frequent dynamics involving “domain walls” in chaotic domains
described earlier in this section.

Chaotic Dynamics

In chaotic dynamics, the lookup frequency histogram will fluctuate irregularly
within a narrow band of low values, and the entropy will fluctuate irregularly
within a narrow high band, corresponding to dynamics on very long transients
or cycles, analogous to strange attractors in continuous dynamical systems.
Transient trees will be sparsely branched, thus will tend to be very long with
relatively low G-density. Chaotic rules increase or conserve disorder and entropy.

9 Filtering

Current methods for filtering domains in CA space-time patterns are based on
a “computational mechanics” approach[4, 8]. An alternative is a byproduct of
keeping track of the look-up frequency described in section 8. The frequencies
of rule-table look-ups in a moving window of time-steps are recorded. They are
also displayed as a changing histogram (figures 13, 15). The size of the window
is 10 for the examples in figures 14 and 15.

To filter background domains, successive key presses in DDLab will pro-
gressively suppress the printing of cells that updated with reference to the cur-
rently most frequent unsuppressed neighbourhood. A dot is shown alongside
the look-up frequency histogram indicating which neighbourhoods are currently

5The standard deviation is given by, σ =

� �
n

i=1
x
2

i

n
where xi = deviation of each measure

from the mean, and n = number of measures. The variance = σ2.
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Figure 14: Examples of filtering space-time patterns to show up gliders more

clearly. (left and centre) Space-time patterns of the k=3 rule 110, transformed to

the equivalent[20] k=5 rule 3cfc3cfc, n=150, from the same evolved initial state. (left)

cells by value, (centre) cells by neighbourhood lookup, and filtered. (right) Space-time

patterns of the k=5 rule 360a96f9 from a random initial state. Cells are shown by

neighbourhood lookup, and are progressively filtered in 2 stages. About 200 time-

steps are shown in each case.

Figure 15: Look-up frequency
histograms relating to figure 14.
(above) k=5 rule 360a96f9, (be-
low) k=3 rule 110 transformed
to k=5 rule 3cfc3cfc. Sup-
pressed neighborhoods are indi-
cated with a dot.

suppressed. The routine can be continued until all neighbourhoods are filtered,
and reversed to progressively unfilter. Particular neighbouhoods can be filtered
in isolation. Filtering can be done on the fly in DDLab for any rule, including
2d and 3d CA[25].

For most glider rules, only a few neighbourhoods need to be suppressed to
filter domains. Rules with very complicated domains, such as the k=3 rules 54
and 110, must first be transformed to equivalent rules[20] with greater k (k=5
in this case) for successful filtering, which requires suppressing a number of the
k=5 neighbourhoods (see figures 4, 14,15).

Discontinuities may occur within chaotic domains that nevertheless have
regularities in their “pattern basis”[4], as in the k=3 rule 18 (see figure 9), or
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between two distinct chaotic domains, or between chaotic and regular domains.
These types of domains can also be filtered to uncover the “domain walls” or
“particles”, analogous to gliders.

Figure 16: Unfiltered and
partly filtered space-time pat-
terns of k=3 rule 18 (trans-
formed to k=5 rule 030c030c).
n=150, about 130 time-steps
from the same random ini-
tial state, showing discontinu-
ities within the chaotic domain.

10 Entropy-density signatures

Figure 17: Entropy-density scatter
plot. Input-entropy is plotted against
the density of 1s relative to a mov-
ing window of time-steps w=10. k=5,
n=150. Plots for a number of complex
rules from the automatic sample (sec-
tion 11) are show superimposed, each of
which has its own distinctive signature,
with a marked vertical extent, i.e. high
input-entropy variance. About 1000
time-steps are plotted from several ran-
dom initial states for each rule.

A related method of visualizing the entropy variance is to plot input-entropy
against the density of 1s relative to a moving window of time-steps. Superim-
posed plots for a number of complex rules are shown in figure 17. Each rule
produces a characteristic cloud of points which lie within a parabolic envelope
because high entropy is most probable at medium density, low entropy at either
low or high density. Each complex rule produces a plot with its own distinctive
signature, with high input-entropy variance. Chaotic rules, on the other hand,
give a compact cloud at high entropy (at the top of the parabola). For ordered
rules the entropy rapidly falls off with very few data points because the system
moves rapidly to an attractor.

Gutowitz[7] has also shown entropy-density plots for large samples of rule-
space, but his plots show a single point for each rule where the measures on
that rule have settled down, whereas the plots shown here focus on the transient
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history of the system. These plots distinguish order, complexity and chaos by
the vertical extent and density of the cloud.

11 Automatically classifying rule-space

Figure 18: Classifying a random sam-
ple of k=5 rules by plotting mean en-
tropy against the standard deviation
of the entropy. Any standard devia-
tion above the maximum scale has been
rescaled to the maximum of 0.18.

Figure 19: left: Clas-
sifying a random sample of
k=5 rules by plotting mean
entropy against standard de-
viation of the entropy, with
the frequency of rules within
a 128x128 grid shown verti-
cally. below: Equivalent plots
for samples of k=6 and 7 rules.

To distinguish ordered, complex and chaotic rules automatically, the mean
input-entropy taken over a span of time-steps is plotted against the standard
deviation of the input-entropy. Figures 18 and 19 summarize how random sam-
ples of k=5, 6 an 7 rules where classified by this method. For each rule, the
data was gathered from 5 runs from random initial states, for 430 time-steps,
discounting the first 30 to allow the system to settle, with w=5 as the size of
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the moving window of time-steps. The measures were averaged and a point was
plotted of mean input-entropy against the standard deviation of the entropy as
shown in figure 18 for the k=5 sample.

Figure 20: Examples of k=5, 6 and 7 complex space-time patterns, with high standard
deviation, from the automatic samples. n=150, 150 times-steps from random initial
states. Cells are colored according to the neighbourhood.

To see the frequency distribution of rules, the plots in figure 19 include an
extra axis, making a 2d histogram, representing the number of rules falling
within blocks on a 128x128 grid overlaid over the scatter plot. Looking at the
k=5 2d histogram, the “tower” in the upper left represents chaotic rules with
low standard deviation and high mean entropy. The ridge on the left represents
ordered rules with low standard deviation and a spread of lower mean entropy.
Complex rules have higher standard deviation, and are spread out towards the
right.There is a low diagonal valley between the tower and the ridge representing
a distinct boundary between ordered and chaotic rules, but a gradual transition
from both towards the complex rules. As the standard deviation decreases glider
interactions either become more frequent, transients longer, tending towards
chaos, or less frequent, transients shorter, tending towards order. The k=6
and k=7 plots show an increasing frequency of chaotic rules and a declining
frequency of ordered and complex rules as k increases. The decrease in ordered
rules is especially marked.

The rule samples and measures, including each rule’s λ and Z parameters,
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were sorted by decreasing standard deviation, and decreasing mean entropy for
each measure of standard deviation, and saved to file. Examples of complex
rules from the samples are shown in figure 20. More examples are presented in
[23], and are all available with the DDLab software[22]. Figure 21 shows the
same k=5 rules sample plotting the Z-parameter against standard deviation.

Figure 21: The same random sample of k=5 rules as in figure 18, (left) the Z pa-
rameter against standard deviation of the entropy, and right with a vertical frequency
axis as in figure 19.

To check whether the expected dynamics (recognized subjectively) corre-
spond to the measures as plotted, the dynamics of particular rules at different
positions on the plots may be examined very efficiently in DDLab, for example
with a mouse click on the plots in figures 18 or 21. For the mean entropy-
standard deviation plot (figure 18), preliminary scans indicate that the expected
behaviour is indeed found, but further investigation is required to properly de-
marcate the space between ordered, complex and chaotic rules and to estimate
the proportion of different rule classes for different k.

For the Z parameter-standard deviation plot (figure 21), there is an approx-
imate correlation between low Z and order, and high Z and chaos, especially at
the extremes. At medium Z, between about 0.5 and 0.75, where most randomly
selected rules, and also complex rules, tend to occur, the correlation becomes
weaker. Z distinguishes between at least the extremes of order and chaos, and
sets a band outside which complex dynamics becomes increasingly unlikely.

The automatic samples are generated by DDLab[22]. This may be done for
larger system size n and and neighbourhood k, and the various other parameters
describes in section 8 may be adjusted. These local measures may be compared
to global measures on convergence in attractor basins described in section 12
below.

12 Attractor basin measures

Measures on attractor basins include the number of attractors, attractor periods,
size of basins, characteristic length of transients and the characteristic branching
within trees. The last in particular gives a good measure of the convergence of
the dynamical flow in state-space.
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Figure 22: The G-density plot-
ted against system size n, for the
ordered, complex and chaotic rules
shown in figures 13 and 23. The the
entire basin of attraction field was
plotted for n=7 to 22, and garden-
of-Eden states counted. The relative
G-density and rate of increase with n
provides a simple measure of conver-
gence.

The simplest measure that captures the degree of convergence is the density
of garden-of-Eden states[21], G-density, counted in attractor basins or sub-trees,
and its rate of increase with n as shown in figure 22. A more comprehensive
measure is the in-degree frequency distribution, plotted as a histogram. The in-
degree of a state is the number of its immediate pre-images. This can be taken
on attractor basins, on just a subtree, or part of a subtree for larger systems.
Subtrees are portrayed as graphs showing trajectories merging onto the sub-tree
root state.

Examples of in-degree histograms for a typical sub-tree for ordered, complex,
and chaotic rules are shown in figure 23. The horizontal axis represents in-degree
size, from zero (garden-of-Eden states) upwards, the vertical axis represents the
frequency of the different in-degrees. The system size n=50 for the complex
and chaotic rules. For very ordered rules in-degrees become astronomical. The
ordered rule shown is only moderately ordered, however the system size was
reduced to n=40 to allow easier computation.

From the preliminary data gathered so far, the profile of the in-degree his-
togram for different classes of rule is as follows:
Ordered: Very high garden-of-Eden frequency and significant frequency of high
in-degrees. High convergence.
Complex: Approximates a power law distribution. Medium convergence.
Chaotic: Lower garden-of-Eden frequency compared to complex rules, and a
higher frequency of low in-degrees. Low convergence.

Issues for further investigation are: a systematic look at the in-degree his-
togram profiles relative to rules at various positions on the mean entropy/standard
deviation scatter plots, how profiles change with system size, if a subtree frag-
ment is representative of the dynamics as a whole, if the profile changes for
subtrees deep in a basin of attraction as opposed to close to the outer leaves,
and to look at the part of subtrees close to particular trajectories (within a given
distance in reverse time-steps), especially in relation to glider dynamics.
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Ordered dynamics. Rule 01dc3610, n=40, Z=0.5625,
λratio=0.668. right: The complete sub-tree 7 levels deep,
with 58153 nodes, G-density=0.931.

Complex dynamics. Rule 6c1e53a8, n=50, Z=0.727,
λratio=0.938. right: The sub-tree, stopped after 12 levels,
with 144876 nodes, G-density=0.692.

Chaotic dynamics. Rule 994a6a65, n=50, Z=0.938,
λratio=0.938. right: The sub-tree, stopped after about 75
levels, with 9446 nodes, G-density=0.487.

Figure 23: Ordered - complex - chaotic CA dynamics.
The space-time patterns of the rules are shown in figure
13. The in-degree histogram of a typical sub-tree shown
in normal and log-log form.

13 Glider interactions and basins of attraction

It is possible to identify classes of configurations that make up different compo-
nents of attractor basins in glider rules. In random states, configurations occur
with equal probability, so the special glider/background configurations are un-
likely. Non-glider/background states make up the majority of state-space, and
are likely to be garden-of-Eden states, or states just a few steps forward in time
from garden-of-Eden states. They occur in the initial sorting out phase of the
dynamics and appear as short bushy dead-end side branches along the length
of long transients, as well as at their tips.

States dominated by glider and background configurations are special cases,
a small sub-category of state-space. They constitute the glider interaction phase,
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making up the main lines of flow within the long transients. This has also been
noted by Domain [5], who described the main lines of flow as the topological
skeleton of physically relevant states and the short dead end side branches from
garden-of-Eden states as a skin of non-physical transitional states, comprising
the bulk of the nodes in an attractor basin.

Gliders in the interaction phase can be regarded as competing sub-attractors,
with the final survivors persisting in the attractor cycle. Finally, states made up
solely of non-interacting gliders configurations (i.e. having equal velocity), or
domains free of gliders, must cycle and therefore constitute the relatively short
attractors, with a period depending on the glider velocity. The attractor states
are made up of gliders, compound gliders or just domains, and thus form a tiny
sub-category of state-space. By simply looking at the space-time patterns of a
glider rule from a number of different initial states, most gliders in its glider
repertoire (relative to the system size) may be identified. A complete list would
allow a description of most of the attractors by finding all possible permutation
of non-interacting gliders.

14 Discussion

Complex behaviour in 1d CA, especially the emergence of gliders, mirrors our
intuitive notion of complex forms and processes emerging in nature. These are
arguably the simplest systems where complex phenomena arise. Their simplicity
allows a description of global as well as local behaviour, and how this varies
across rule-space.

A global perspective on CA dynamics and rule-space is provided by the
notion of attractor basins. The basin of attraction fields of complex rules are
typically composed of moderately bushy transients trees rooted on relatively
short attractor cycles. Gliders interacting aperiodically belong to the main
lines of flow within the transient trees. Configurations where gliders interact
periodically, or have ceased to interact, make up the attractor cycles.

Gliders have a distinct identity. Their interactions are predictable. A
collision-table could be formulated empirically, without knowing the underlying
rule-table mechanism. The collision-table would probably need to hold much
more information than the rule-table. It would need to describe all possible
collisions at different points of impact between gliders. However, compared to
the rule-table, the collision table would provide a far more useful description
of established behaviour, enabling some prediction of the system’s future evolu-
tion, though only the rule-table could account for the origins of gliders, their
emergence by a process of self-organization from random patterns.

Interacting gliders may combine to create compound gliders, interacting at
yet higher levels of description, and conceivably the process could unfold hierar-
chically without limit in large enough systems. This is analogous to describing
matter in terms of chemistry as opposed to the underlying sub-atomic parti-
cles, or in terms of biology as opposed to the underlying chemistry. There are
any number of further analogies that might be drawn from nature or society.
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However, the origins of the higher level entities must refer to the lower level.
According to this approach, a system’s complexity is the number of levels of
description that underpin it in a descending hierarchy.

An unlimited source of complex rules that support gliders is available by
the automatic method described, based on local measures, in particular input-
entropy variance, which also classifies rule-space for a spectrum of ordered,
complex and chaotic dynamics. Global measures, G-density and in-degree fre-
quency, taken on attractor basins and subtrees, relate to the local measures.
Both local and global measures relate approximately to the rule parameter, Z.
Further systematic investigations of both the local and global measures, based
on the automatic rule samples, and extended samples, are needed for a deeper
understanding of CA rule-spaces. The computer tools for such an investigation
are largely in place.

The software

“Discrete Dynamics Lab” (DDLab) was used for the computations, examples,
figures and data in this paper. The software is available at:
http://www.santafe.edu/∼wuensch/ddlab.html.
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