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Control rules governing transciption of eukaryotic genes can be modeled as Boolean function, and these rules
are strongly biased toward large numbers of “canalizing” inputs. The ensemble of networks with the observed
canalizing bias predicts cells are in an ordered regime with convergent flow in transcription state space, a
percolating subnetwork of genes fixed on or off an isolated islands of twinkling genes turning on or off, and a
near power-law distribution of cascades of gene activity changes following perturbations. The data suggest that
a given cell state or type can be represented as an attractor of transcriptional activity or flow over time. � 2002
Wiley Periodicals, Inc.
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1. INTRODUCTION

T ranscriptional regulatory networks are complex dy-

namical systems that present science with a great

challenge in deciphering the rules that govern their

behavior [1]. One approach is to begin to build computer

models that capture some of the properties of these net-

works and then integrate observed and experimental biases

and behavior into the computer models. This approach is

well understood outside the general area of biology (i.e.,

cellular automata and Boolean networks), and with the in-

creased capability of monitoring global gene expression in a

variety of biological systems, these new mathematical ap-

proaches are needed to serve as a language for gene expres-

sion information [10–21].

The present article reports an analysis of data pertaining

to certain biases in the observed patterns of transcription

regulation of eukaryotic genes and builds a model of gene

regulatory networks based on those biases. What we found,

in a Boolean idealization model, a small subset of possible

switching rules, the canalizing functions, are highly utilized

in the observed data. To draw inferences about the impli-

cations of the observed biases, a statistical ensemble was

used. Representative gene networks constructed within the

ensemble of networks that satisfy the biases were studied

numerically. The consequences indicate that modeled ge-

nomic regulatory systems are in a dynamical “ordered”

state. In a quantitative measure of order and chaos, the gene

regulatory networks are on the order side of this continuum,
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but far from completely ordered networks. A number of
testable consequences are derived.

2. TRANSCRIPTION STATE SPACES, TRAJECTORIES,
ATTRACTORS, AND BOOLEAN NET MODELS

A state space is a mathematical abstraction used to de-
scribe a dynamical system consisting of a number of
interacting variables. The human genomic regulatory

system consists of 40,000 or so interacting genes and their
products [1,A]. A given cell type may express thousands of
those genes at any moment. Based on gene microarray tech-
nology [2,3,4,B,C], SAGE analysis [5], quantitative PCR
[2,6,7], or other approaches, it is rapidly becoming feasible
to measure the simultaneous transcript abundance of thou-
sands of genes in single cells, cell lines, or developing sys-
tems. Each such measurement gives a snapshot of the cur-
rent transcription state of a cell or tissue. Snapshots at a
timed succession of moments can be linked in a movie that
exhibits the trajectory over time of the integrated genetic
regulatory system through its state space. The state of a cell
at an instant is more complex than a mere transcriptional
snapshot, for it includes not only the concentrations of all
RNA, protein, and other molecular species and species com-
plexes, but their spatial locations and relative motions as
well [8,9]. As well, in a tissue there are likely a variety of cell
types that interact and are in different states over time.
However, computer models of gene regulatory networks can
be constructed and tested with presently known biases in
how genes are regulated at the transcription level and as
large scale expression profiles accumulate in the future for a
variety of systems, the computer models can be tested and
refined to reflect the new data and observational biases. It is
in that light that we have undertaken this initial probabilis-
tic abstract model building of gene regulatory networks with
some of the apparent transcriptional biases that have al-
ready been uncovered.

Genetic regulatory networks can be modeled as systems
of continuous [10–13] or discrete, on/off variables [14–18].
For computational tractability, we idealize genetic regula-
tory networks as Boolean networks. A Boolean network con-
sists of binary (on/off) nodes (genes), links (casual cis and
trans regulatory interactions between genes), and rules (re-
lations that specify the next state of a node or gene as a
function of the states of its previous inputs). The dynamics
are simplified by parallel synchronous update of the entire
network. A network and its flow in state space are shown in
Figure 1 [19–21]. A binary variable with K inputs has 2K

possible Boolean functions [16]. A K-input gene can repre-
sent a transcription factor, hormone, coactivator, corepres-
sor, or a given cis-DNA element in a gene in which the
transacting transcription factor or modulator is unknown.
We define two classes of Boolean functions, parameterized
by different types of biases that are not mutually exclusive.
The first bias, canalization [16], has the property that at

least one of the K inputs has one value, 1 or 0, which alone
suffices to guarantee the activity or inactivity of the regu-
lated variable. For the K = 2 “or” function, the regulated
gene is active at the next moment if either or both of its
inputs are currently active. Thus, if either input alone is
active, each guarantees that the regulated gene is active at
the next moment. Each such input is a canalizing input. A
Boolean function with K inputs may have 0,1,2, . . . ,K cana-
lizing inputs. The second bias is denoted by a parameter p:
0.5 � p � 1.0, representing the bias away from an equal
probability of ones and zeroes in the responses of the Bool-
ean function [16].

Steady-state mRNA concentrations in a cell for a particu-
lar gene are rarely on or off. However, an underlying as-
sumption is that s twofold or greater change, either up or
down, in a particular mRNA can have a physiological con-
sequence. Therefore, in our Boolean idealization, the 0 state
can represent the twofold or more decrease in expression of
a gene while the 1 state can represent a twofold or more
increase in expression of that particular gene with the un-
derlying assumption that the change will affect downstream
gene transcription. The Boolean model is computationally
tractable and yet still reflects the essential dynamics of a
gene regulatory network [16]. The model allows us to cap-
ture the essential roles of known biases in gene regulatory
rules we can derive from known experiments.

3. REGULATION OF EUKARYOTIC GENES APPEARS TO BE
STRONGLY BIASED TOWARD CANALIZING FUNCTIONS

T o characterize possible biases in known regulated eu-
karyotic genes we analyzed published data for over
150 regulated transcriptional systems with K = 3, 4, or

5 known direct molecular inputs, and a few systems in
which K = 7, 8, or 9 inputs could be defined (see Appendix
A) We used the following criteria:

1. A known piece of regulatory DNA for a given gene was
linked to a reporter gene such as �-galactosidase or the
firefly luciferase gene.

2. A functional assay existed for the expression (transcrip-
tion) of that piece of regulatory DNA in cells, in vitro, or
using transgenic approaches where the control and re-
porter gene were analyzed in whole organisms.

3. The study used mutational or deletional [22] analysis of
the important DNA elements binding the candidate tran-
scription factor(s) or used mutant transcription factors or
footprint analysis [23] of the important DNA transcrip-
tion factor interactions.

4. Many or all of the possible combinations of the transcrip-
tional factors or mutant DNA elements (deletion analy-
sis) were tested or at least reasonably inferred from the
study. Transcription is not binary, as discussed. A partial
justification for the Boolean idealization lies in the com-
mon observation of nonadditive collective behavior.
Thus, if the level of transcription given input 1 alone is

24 C O M P L E X I T Y © 2002 Wiley Periodicals, Inc.



0.1 of the maximum, given 2 alone is 0.25 of the maxi-
mum, and given 1 and 2 together is 1.00, we classified the
gene as having K = 2 inputs and of being governed by the
“and” function.

T he fraction of all possible Boolean functions which are
canalizing on {1,2, . . . , K} inputs decreases very rap-
idly as the number of inputs per node, K, increases.

This distribution allows us to test whether actual regulated

genes, modeled as Boolean rules, are governed by rules
drawn at random from the set of possible Boolean func-
tions. Figure 2a,b, and c, shows the distribution of numbers
of canalizing inputs per gene for K = 3, 4, and 5, as observed
from the data and compared with what would be expected
from random rule selection. A statistically significant bias
toward a high number of canalizing inputs per gene, c,
among the sampled regulated eukaryotic genes is observed
for K = 3, 4, and 5 (statistical significance < 0.01). Eukaryotic

FIGURE 1

A graphical depiction of the complete state-space of a sample Boolean net of six genes and K = 3, assigned at a random. There are three basins
of attraction, with attractor periods of 1 (fixed point), 2, and 5. The 26 = 64 states of the six genes are shown within 3 × 2 rectangles, where active
genes are colored, inactive genes are white. Flows proceed inwards, then clockwise around attractor cycles. The actual circuitry (wiring) between
the six genes (numbered 0 to 5) is shown on the far right, where self-links are short stubs, and in the table on the right, which also shows the
logic functions (rules) for each gene, according to Wolfram’s convention [Wolfram 1983]. The computations and graphics were made with DDLab
[ref].
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genes are also strongly biased toward high values of p (data
not shown). Because of the overlap between the high p and
the canalizing classes of Boolean functions, our results
might reflect a bias toward high numbers of canalizing in-
puts alone, toward high p values alone, or both. To discrimi-
nate these, after conditioning on p classes, we tested for
residual biases on the number of canalizing inputs per gene
(see Appendix B, B1a, B2a, and B3a) and found strong re-
sidual biases toward high numbers of canalizing inputs for
K = 3, K = 4, and K = 5 genes. Conversely, no obvious residual
bias toward high p was found after conditioning on the
number of canalizing inputs per gene (see Appendix B,
Tables B1b, B2b, and B3b). Note that of the 17 cases in Table
B1 for K = 3, 4, and 5, that examine, after controlling for p

values, possible shifts toward high canalizing inputs per
gene, all 17/17 cases show such shifts. Of these cases, 13 are
statistically significant. By contrast, the 8 cases of possible
shifts, after controlling for c values, toward high p values,
show 4/8 cases of shifts to lower p values, 2/8 cases of shifts
to higher values, and 2/8 cases of no apparent shifts. Of
these, two of the shifts to lower p values were significant
statistically, whereas only one of the shifts to higher p values
was significant statistically.

W e tentatively conclude from these results that ob-
served regulated eukaryotic genes with K = 3, 4, and
5 inputs show a strong bias toward high numbers

of canalizing inputs per gene, with no residual bias toward

FIGURE 2

The upward trending lines are the data, the downward lines represent the distributions of canalizing from random Boolean functions of K variables.
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high p values. This conclusion is tempered by the following
factors: We may have misread or misanalyzed the published
data. Most importantly, genes governed by canalizing in-
puts may well be more readily studied experimentally than
those governed by non-canalizing Boolean functions. Ulti-
mately this important reservation can be assessed by exam-
ining randomly chosen regulated transcription units.

4. AN ENSEMBLE APPROACH SUGGESTS EUKARYOTIC
GENOMIC SYSTEMS ARE MEASURABLY WITHIN THE
ORDERED REGIME

T he observed bias toward high numbers of canalizing
inputs per gene suggests that large model transcrip-
tional regulatory networks lie in an ordered dynamical

regime not far from the transition to the chaotic region of a
dynamical system [14,16–18,24–27]. To test the expected
implications of the observed bias, we constructed en-
sembles of Boolean networks with K = 3, 4, and 5, or mixed
K inputs per gene, in which each network was constrained
to exhibit the observed biases toward high numbers of cana-
lizing inputs per gene as found from analyses and modeling
of the data from laboratory experiments. Except for these
biases, network architecture and logic were random. The
averaged behaviors of ensemble members exhibit the ex-
pected consequences of the observed canalizing bias in the
absence of further systematic features such as biases in the
connection architecture of the network, although recent
findings have shown “small-world” structure in genetic
regulatory networks [39,40].

A standard measure to test whether a continuous dy-
namical system is in the chaotic or ordered regime consid-
ers the propagation forward in time of nearby points in state
space that lie on distinct trajectories. If the trajectories di-
verge, exhibiting sensitivity to small changes in initial con-
ditions, this is a signature of chaos. If nearby states on dif-
ferent trajectories converge, this is a signature of order. This
analysis can be carried over to discrete dynamical systems
[24–26] by sampling randomly in the state space of the sys-
tem pairs of states at different initial separations and deter-
mining whether, averaged over state space, the trajectories
of such states tend to converge or diverge at the next time
step. The metric of distance in a discrete system is the nor-
malized Hamming distance H(t) which counts the fraction
of places in which the two states being compared differ. If
the normalized Hamming distance increases, D(t + 1) > D(t),
this is the discrete analog of chaos, if it decreases, D(t + 1) <
D(t), it signifies order. Previous work [14,16–18,24–27] shows
that networks with K < 2 inputs lie in the ordered regime,
whereas networks with K > 2 inputs are chaotic, but can be
driven into the ordered regime by increasing p or increasing
the number of canalizing inputs per gene.

A simple characterization of the overall behavior of a
network is provided by the Derrida plot [26], and calculation
of the Derrida Coefficient, CD, which is the log of the slope

of the Derrida plot at the origin. The log of the slope at the
origin describes the behavior of small perturbations to a
network and is the discrete system homologue of the Lya-
punov exponent for continuous systems. The scale of the CD

was derived by first building K = 3, 4, and 5 networks with all
K inputs being canalizing (i.e., c = 1.0). CD was found to be
�1.24, representing the most ordered nontrivial network
possible. (A network with all rule outputs being all zeroes or
ones yields CD = ��, but such networks perform no useful
differentiation between input states). Similarly, we built
networks with K = 3, 4, and 5 with no canalizing inputs,
yielding CD = 1.7. Thus, the range �1.24 � CD � 1.7 allowed
us to quantify the degree of order-chaos in the gene regu-
latory networks built from the bias we observed in the ex-
perimental data. The averaged Derrida curve of members of
the ensembles of networks with K = 3, matching the calcu-
lated high numbers of canalizing inputs per gene derived
from known experiments is shown in Figure 3A,B. The cal-
culation of CD also is derived from the data in Figure 3B. As
one can see the CD = �0.09 derived from the experimental
data indicates that these K = 3 networks lie in the ordered
regime. In Figure 3C,D are similar presentations of analysis
of K = 4 networks. The K = 4 networks built with c = 0.708,
derived form the data, gave a CD = �0.254, clearly in the
ordered regime. Figure 3E,F shows the data for K = 5 net-
works in which c = 0.649, derived from modeling of the
experimental data. CD = �0.395 was calculated for this
set of K = 5 networks, built from the experimental data. In
all cases, the Derrida curve and the CD indicate that the
generic behavior of networks in each ensemble lies in the
ordered regime, not far from the transition to chaos, which
is defined as a CD = 0. There is a trend of decreasing CD

values with increasing K, suggesting that networks with
higher K inputs may be more stable and less sensitive to
perturbation.

Mixed networks (a distribution of K values, with appro-
priate subdistributions of c values based on the experimen-
tal data) give results that are again in the ordered regime. In
the K-c plane, numerical work has demonstrated that a de-
creasing fraction of inputs need to be canalizing to be at the
phase transition or in the ordered regime as K increases. As
K increases the system will pass from the chaotic into the
ordered regime if, on average, about 2.6 or more of the
inputs per gene are canalizing. Thus, for genetic networks to
lie at a given position in the ordered regime as K increases,
the average number of canalizing inputs per gene needs to
decrease. Interestingly, the observed fraction of canalizing
inputs per gene does decrease as K increases as required.
Although the data are too scant for the trend to be statisti-
cally significant, this tentative observation is consistent with
the hypothesis that natural selection has tuned the fraction
of canalizing inputs per gene for each K class such that
networks are within the ordered regime. The resulting simi-
larity of the Derrida curves and calculated CD for eukaryotic
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genes with K = 3, 4, and 5 known inputs suggests that natu-
ral selection may tune each K class (Figure 3).

Because networks can be driven into the ordered regime
for a given value of K > 2 by tuning p or the number of
canalizing inputs per gene, it is very interesting that the
observed rule biases can be accounted for by a bias in favor
of high numbers of canalizing inputs, with no residual bias
toward high p values. A bias toward canalizing inputs may
reflect chemical simplicity, selection, or other factors.

Figure 3 constitutes evidence that eukaryotic cells lie in
the ordered regime. Furthermore, the Derrida tests should
be experimentally feasible by use of a cell population in
which randomly chosen genes have exogenously control-
lable promoters introduced upstream. Then initial pertur-

bations of one or several promoters activities can be tried,
the corresponding initial unperturbed and perturbed tran-
scription states assessed by gene microarray gene expres-
sion profiling, SAGE, or other techniques, and whether
these transcription states converge closer over a short time
interval can be directly tested. Indeed, if tried for many cell
types, and choices of randomly perturbed gene transcrip-
tion, this would directly test whether convergence—hence
homeostasis—is a global (averaged) property in eukaryotic
transcription state spaces [16]. Some experiments in which
one gene is introduced and activated and then the down-
stream gene activation analyzed by gene expression profil-
ing have begun to appear in the literature. These experi-
ment suggest that eukaryotic gene networks are robust

FIGURE 3

Comparison Derrida plots using random rules versus rules based on the fraction canalizing rules (f.c) that were derived from the data for K = 3,
4, and 5 networks (A, C, E). The Derrida coefficient (Dc) is derived from the initial slope of the Derrida plots and was then compared to networks
that have random rules, 100% canalizing rules (f.c = 1), or fraction of the rules that are canalizing with a given K input and derived from the data
for K = 3, 4 and 5 networks (B, D, F). Derrida plots are created by initializing two copies of a Boolean network on two states with different node
values. The current “distance” D(t), between these two states is given by the fraction of sites that differ (normalized Hamming distance) and is
indexed by the x-axis. Each initial state is propagated one time step forward along its trajectory. The successor distance, D(t + 1), is the normalized
Hamming distance between these two successor states, (y-axis). The “Data” curves result from nets of size N = 1000, incorporating biases taken
from the actual genetic data and using 10 pairs of initial states at 100 different distances for each of 10 networks. The “Random” curves are
analytically derived in the N → � limit, hence their smoothness. Curves below the diagonal are in the “ordered” regime because all initial differences
decrease with time, and curves above the diagonal are in the “chaotic” regime because small initial differences increase with time.
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against major changes in expression patterns, unless the
gene is critical for growth or survival.

5. ADDITIONAL PREDICTED PROPERTIES

Percolating Frozen Components, “Twinkling Islands,”
and Mutual Information Measures

W e used the ensemble approach to predict a variety
of additional properties of genetic networks with
the observed strong bias toward high numbers of

canalizing inputs per gene. All the properties we discuss are
correlated features of the ordered regime and have testable
consequences. Our analysis involved running 1000 or more
simulations of randomly wired networks, but with various
values for K inputs and N genes, and rule biases for the K
inputs. Statistical properties of the gene network simula-
tions are then gleaned from their global behavior.

The first among these is the formation of a connected
frozen component of genes in fixed active or fixed inactive
states, leaving behind functionally isolated islands of genes
twinkling on and off in complex patterns. This is a global
property of these networks independent of the specific wir-
ing but dependent on the K inputs and rule biases.

If a model genetic network is initiated at an arbitrary
state far from an attractor state cycle, it flows along a “tran-
sient” trajectory to its corresponding attractor. For networks
in the ordered regime with the observed canalizing bias,
almost all of the nodes turn on and off in complex patterns
initially. As the transients progress toward the attractor,
many of the nodes settle into fixed active or fixed inactive
states. Ultimately, these frozen nodes form a large con-

nected (or “percolating”) cluster whose size scales in pro-
portion to the number of nodes in the entire network. Near
or on the attractor the frozen component creates function-
ally isolated “islands” of coupled genes switching on and off
in complex twinkling patterns (Figure 4).

The functional isolation is due to the fact that changes of
gene activities within one twinkling island cannot propagate
changes of gene activities through the percolating frozen
component to another twinkling island. Hence, once the
frozen component forms, the islands are cut off from one
another. By contrast, in the chaotic regime where K > 2 and
random rule selection is used, small frozen islands may
form, but do not create a percolating frozen cluster. Instead,
the switching or unfrozen nodes form a percolating twin-
kling “sea” whose size scales in proportion to the size of the
network. The phase transition form chaotic to ordered be-
havior as measured by the Derrida curve and Derrida coef-
ficient, because network parameters, such as the fraction of
canalizing inputs increases, appear to be associated with a
transition from a percolating twinkling sea to isolated twin-
kling islands (Figure 4).

T he predicted occurrence of isolated twinkling islands
in the behavior of the real eukaryotic genome, if con-
firmed experimentally, would be of fundamental im-

portance: First, because each such island typically has more
than one attractor itself, such islands may represent the
basic decision making circuitry of the genome. A cell type is
then comprised of a kind of combinatorial epigenetic code
[16–18], consisting of a specific choice of one of the possible
attractors for each of the different isolated twinkling islands.

FIGURE 4

Tuning canalizing proportion across order-chaos boundary. The three graphics shown here depict in a 2-D format a Boolean Net of size N = 1296
(36 × 36). The connections are random (K = 3). Genes have a Poisson distribution of numbers of canalyzing inputs, with the mean fraction indicated
by f.c. After 1000 time steps sites that have not changed for 50 time steps are colored (“frozen”), with 1 = orange, 0 = green. Sites that continue
to change (“twinkle”) are black. The eukaryotic data correspond to a regime where the majority of sites are fixed and a small proportion (<10%)
change.
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Second, it should be experimentally feasible using measure-
ments of cell transcription states of cell type populations at
timed intervals to discover which genes are members of
each isolated island, for genes in the same island should
twinkle in a correlated way, whereas those in different is-
lands should be uncorrelated.

A straightforward approach to identifying genes within
one twinkling island is the “mutual information” measure
[28,29]. The mutual information between two genes A and
B, is given by the following: MI(A, B) = H(A) + H(B) �

H(A, B), where H is the entropy of the state sequence visited
as the net traverses its attractor.

If either or both of genes A or B are frozen active or
frozen inactive, the mutual information measure is 0. If
genes A and B are twinkling on and off in an entirely un-
correlated way, then their mutual entropy equals the sum of
their entropies, and the mutual information is again 0, with
statistical fluctuations. But if A and B are twinkling in a
correlated way, the mutual information is positive. The ob-
vious and testable hypothesis is that genes in the same is-
land should exhibit positive mutual information, whereas
genes in different islands should not.

Figure 5, a and b, confirms this intuition. For model
genes within one isolated island there is a strong positive
signal decreasing roughly exponentially as mutual informa-
tion increases from 0. For model genes in different isolated
islands, the signal is sporadic and low. This suggests that it
may be experimentally feasible to discover which genes are
members of each twinkling island; hence, count the number
of such islands, the size distribution of islands, and identify
the specific genes within each island. Important caveats to
this hope are that these numerical studies are based on
synchronous Boolean networks. Extension to more realistic
asynchronous and continuous models is needed. Recent
data on continuous models, using our derived fraction
canalizing values, support our main conclusions [41]. In ad-
dition, experimental observation of fluctuating (unfrozen)
gene activities may often be difficult.

Cascades of Changes in Gene Activities

I f a signal (hormone, growth/differentiation factor, etc.) is
added to a cell population, typically an avalanche of
changes in gene activities cascades from one or two ini-

tial genes directly affected by the signal to dozens or even a
few hundred other genes. Such cascades are the concept of
a “genetic pathway.” “Cross talk” between cascades is the
mutual interactions of avalanches started at more or less the
same time from different initial genes in a given cell. In
terms of the state space picture, an avalanche is an alter-
ation in gene activity patterns due to perturbing the cell
from its initial (transcriptional) state to a nearby state. Such
a perturbation may leave the system on a transient leading
to the same attractor or to some other attractor. One ex-
ample would be the choice of differentiation of a mesen-

chyme cell to either a mature bone cell or to a fat cell,
depending on the initial signals.

We can define a gene as “damaged” [16,25,27] by a per-
turbation such as transient exposure to a signal if its on/off
behavior is ever different from what it would have been if
unperturbed. Once a gene is damaged, it remains damaged
even if thereafter its behavior is “normal” or continues to
show successive differences with the unperturbed state. The
definition of damage allows us to define the size of an ava-
lanche of damage induced by a perturbation such as addi-
tion of a signal. We study this computationally by flipping
the state of a single node in one copy of a network and
monitoring the spread of the difference pattern created by
propagating the perturbed and unperturbed networks for-
ward in time. Results for networks incorporating observed
canalizing biases show that the distribution of avalanche
sizes follows a near power-law distribution, truncated with
a finite size cutoff that appears to scale as a function of ∼N

FIGURE 5

Mutual information measures between genes. Mutual information
measures correlation between time sequences of discrete states.
The nets used above have N = 2560 and K = 3, with the canalizing
distribution given by the eukaryotic data. The difference between
mutual information in same (a) and different (b) attractors is
noticeable, though noisy. The “signal-to-noise ratio” improves
with net size, however, and should be quite good for nets of size
∼80,000.
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(Figure 6). Thus, for the human genome with an estimated
30 to 40,000 genes [1], maximum avalanches once the fro-
zen component has formed should involve about 200 genes.
The predicted size distribution of avalanches of changes of
gene activities is directly testable and if carried out and
confirmed, would constitute further evidence that the ge-
nomic system lies in the ordered regime. Furthermore, once
the frozen structure is in place, any such avalanche should
be confined to within one isolated twinkling island. There-
fore, study of avalanches should offer an independent ex-
perimental means, in addition to mutual information mea-
sures, to discover which genes are members of the same
functionally isolated island of genes.

The size distribution of avalanches also allows a means
to test whether the zygote is initiated on a transient far from
any attractor or is already on an attractor. If the former, then
the frozen component has not yet formed, and avalanches
of damage should be typical of the chaotic regime, with a
power-law distribution of small avalanches and a large
number of vast avalanches affecting tens of thousands of
genes. If the frozen component is already in place in the
zygote, then the largest avalanches should scale as a square
root function of the number of genes.

Attractors and Their Scaling Properties
A tentative interpretation of genetic network models says
that a cell type may correspond to one or more attractors
[14–18]. If so, then any scaling relation between numbers of
attractors and network size, as a function of position in the

ordered or chaotic regime, becomes a testable prediction of
the theory. We carried out numerical analysis of the scaling
behavior for the number of attractors as a function of net-
work size for networks with K = 3, 4, and 5 inputs tuned to
the observed canalizing bias and found that the number of
attractors increases as the square root of the size of the
genome (data not shown). This scaling behavior for K = 3, 4,
and 5 is the same and persists in a relatively broad region
around the order/chaos diagonal as defined by the Derrida
curve. Similar scaling behavior has been observed compu-
tationally and analytically on the K-p boundary between
order and chaos [30–33], though this transition shows con-
ventional phase transition behavior and becomes sharper
for larger networks.

To test for the number of attractors in a network, we
carried out numerical simulations in which the network was
initialized with a succession of random initial states and
state cycle attractors were encountered and discriminated.
In order to test that we had “saturated” the state cycle at-
tractors, we implemented a series of searches in which
search was stopped if 4, 20, 100, 500, and 2500 successive
initial states lay on trajectories that revealed no new state
cycle and observed asymptotic convergence of the number
of attractors.

Gene Expression Overlaps Between Attractor Clusters
We define the “skeleton” of an attractor to characterize a
gene as fixed off, 0, fixed on, 1, and transiently switching, 2.
We then measured the overlap between different attractors
as the normalized Hamming distance between skeletons,
i.e., the fraction of genes that are in different “states,” 0, 1,
or 2, on the skeletons. A typical distance matrix for a net-
work of 1000 genes with K = 3 and the observed canalizing
bias show that skeletons are within 10% of one another and
may form a hierarchy of distances.

Our results parallel known features of gene expression
overlaps between eukaryotic cell types: First, the existence
of a percolating frozen component common to all attractors
predicts that all cells share a common core of genes in the
same fixed activities: fixed on or fixed off. This prediction
appears to fit data on the large overlap of gene transcription
at the nuclear level in all the different cell types in a given
higher eukaryote based on RoT data [34] and has been re-
examined with gene expression microarrays and SAGE tech-
niques [2–6]) or quantitative PCR technique.

Second, in addition to a common core of expressed
genes, the typical distribution of differences in gene expres-
sion patterns between cells in different states is on the order
of a few percent [16]. In general, model and real cell types
differ in a few to 10% of the expressed genes, as they move
from one state to another [16]. One example of this property
might be that cartilage and bone cell types may have a com-
mon skeleton, but the detailed structure of their attractors
may be quite different. These predicted overlap distribu-

FIGURE 6

Damage avalanches. Damage avalanches are created by flipping
one bit randomly in a Boolean Net and observing the spread of
“damage.” A site is damaged after a perturbation if its state of
activity is ever different than what it would have been. Once a site
is damaged, it remains damaged whether or not it returns to
normal. The summation stops after the number of affected bits
does not change for 20 time steps. The nets in this model were
constructed using canalyzing bias from the data and a 50/50
mixture of K = 3 and K = 4 inputs. Finite size effects cut the curves
off at about 2√ N. The above data represents about 300,000 ava-
lanches total.
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tions are directly testable by microarray, SAGE, quantitative

PCR, or other means to test the transcriptional state of thou-

sands of genes in different defined cell types on various

transients of differentiation.

6. DISCUSSION

C ell and molecular biology is now entering the era in

which study of the integrated behavior of genomic

regulatory systems, including genes, RNA, proteins,

protein modifications, and cell signaling pathways, is

emerging as the next major task [35]. Given the complexity

of the cellular system, theory and experiment will increas-

ingly need to be integrated. At least three theory-based ap-

proaches compliment one another: First, construction of

detailed kinetic models of portions of the total “circuitry”

[36]; second, reverse engineering by inferences from the

temporal patterns of transcription, translation, and other

molecular species activities to hypotheses about the cir-

cuitry and logic connecting the components [37,11]; third

use of the ensemble approach to deduce the expected struc-

ture and behavior of genomic networks based on any

known constraints, testing those predictions, or finding new

constraints; hence the next improved ensemble [14–18,24–

27,30–32,38]. The three approaches have complementary

strengths and weaknesses. Detailed circuit models must

deal with the fact that many components of the circuit may

not yet be known. Reverse engineering may often lead to

many candidate circuits that might account for the tempo-

ral patterns observed. An ensemble approach has the

strength of predicting properties that are insensitive to

many details of network structure and logic, but the weak-

ness that only statistical predictions are made.

The present study is based on the ensemble approach.

We have shown evidence suggesting a marked local con-

straint: Observed regulated eukaryotic genes exhibit a

strong bias, in the Boolean idealization, toward canalizing

Boolean functions. The most important hesitation with re-

spect to this conclusion is the fact that genes regulated by

canalizing functions may be more readily studied. Ulti-

mately, this bias must be assessed using randomly chosen

transcription units and their control rules.

We have idealized gene activities as binary variables.

More accurate descriptions of gene activities might include

continuous or stochastic differential equations. Reasonable

grounds exist to believe that the broad properties of Bool-

ean networks recur in a homologous class of continuous,

nonlinear network models. In particular, Glass and his col-

leagues [10–13,41] have studied nonlinear and piecewise

linear differential equation network models. Recently, pre-

liminary evidence for the phase transition between order
and chaos seen in Boolean networks has been found along
the p-K boundary in piecewise linear systems, (Glass, per-
sonal communication). Nevertheless, extension of our en-

semble studies to nonlinear and stochastic network models

as well as discrete multi-state models are required to estab-

lish the robustness of our results.

O ur numerical study of Boolean networks with ob-

served canalizing biases revealed a number of robust

properties of model genomic regulatory systems.

1. Such systems lie in the ordered regime with slightly con-

vergent flow along neighboring trajectories in state

space. Convergence following perturbation in the tran-

scription state of cells is testable.

2. A percolating frozen subnetwork arises in which genes

are in fixed active or inactive states on all attractors—

model cell types or states.

3. The percolating frozen subnetwork leaves behind one or

more functionally isolated twinkling islands of genes un-

able to communicate with one another through the fro-

zen component. Members of each island are discover-

able with current experimental techniques.

4. The power-law size distribution of such twinkling islands

and near power law distribution of avalanches of damage

are predicted and testable.

5. The possibility that in the zygote the frozen component is

not yet formed can be tested by the occurrence of very

large avalanches of damage following perturbation of

single gene activities.

6. The overlaps in gene activity patterns in cell types and

states along trajectories, and a combinatorial epigenetic

code for the alternative cell states of a higher eukaryote

are also open to test.

The above predictions demonstrate that an ensemble ap-

proach, although limited to statistical predictions, may yield

important insight into the integrated behavior of genomic

systems. Where predictions fail, the new data can be used to

demonstrate further biases in construction, hence the next

improved ensemble.
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APPENDIX B

TABLE B1

a: K = 3, 66 Cases

C

P

Statistical Significance4/8 5/8 6/8 7/8 8/8

0
Random 0.47 25.00% 0.47 25.0% 0.06 3.125% 0 0

NA
Data 0 0 0 0 0

1
Random 0.077 2.34% 0.615 18.75% 0.308 9.375% 0 0 P < 0.004

(left shift)Data 0.055 (1/18) 0.945 (17/18) 0 0 0
2

Random 0 0 1.0 9.375% 0 0
NA

Data 0 0 1.0 (4/4) 0 0
3

Random 0 0 0 0.944 6.641% 0.056 0.39% P < 0.177
(left shift)Data 0 0 0 1.0 (44/44) 0

Margin
totals 1 17 4 44

b: K = 3, 66 Cases

P C = 0 C = 1 C = 2 C = 3 Statistical Significance

4/8
Random 0.914 25.000% 0.086 2.344% 0 0 P < 0.004

(right shift)Data 0 1.0 (1/1)
5/8

Random 0.571 25.000% 0.429 18.75% 0 0 P < 0.001
(right shift)Data 0 1.0 (17/17)

6/8
Random 0.142 3.125% 0.429 9.375% 0.429 9.375% 0 P < 0.123

(right shift)Data 0 0 1.0 (4/4)
7/8

Random 0 0 0 1.0 6.641%
NA

Data 0 1.0 (44/44)
Margin
totals 0 18 4 44
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TABLE B2

a: K = 4, 49 Cases

P C = 0 C = 1 C = 2 C = 3 C = 4 Statistical Significance

9/16
Random 0.994 34.7% 0.006 0.195% 0 0 0 P < 0.006

(right shift)Data 0 1.0 (1/1) 0 0 0
11/16

Random 0.897 11.96% 0.193 1.367% 0 0 0 P < 0.193
(right shift)Data 0 1.0 (1/1) 0 0 0

12/16
Random 0.665 3.918% 0.332 1.562% 0.012 0.073% 0 0 P < 0.001

(right shift)Data 0 0.4 (2/5) 0.6 (3/5) 0 0
13/16

Random 0.371 0.635% 0.457 0.781% 0.171 0.293% 0 0 P < 0.001
(right shift)Data 0 0 1.0 (12/12) 0 0

14/16
Random 0.067 0.024% 0.267 0.098% 0.40 0.146% 0.266 0.098% 0 P < 0.001

(right shift)Data 0 0 0.154 (2/13) 0.846 (11/13) 0
15/16

Random 0 0 0 0 1.0 0.05%
NA

Data 0 0 0 0 1.0 (17/17)
Margin
totals 0 4 17 11 17

b: K = 4, 49 Cases

C

P
Statistical

Significance8/16 9/16 10/16 11/16 12/16 13/16 14/16 15/16

1
Random 0.03 0.012% 0.042 0.195% 0.145 0.684% 0.291 1.367% 0.332 1.562% 0.166 0.781% 0.021 0.098% 0 P < 0.379

(No shift)Data 0 0.25 (1/4) 0 0.25 (1/4) 0.50 (2/4) 0 0 0
2

Random 0 0 0 0 0.134 0.073% 0.571 0.293% 0.286 0.146% 0 P < 0.310
(left shift)Data 0 0 0 0 0.176 (3/17) 0.706 (12/17) 0.118 (2/17) 0

3
Random 0 0 0 0 0 0 1.0 0.098% 0

NA
Data 0 0 0 0 0 0 1.0 (11/11) 0

4
Random 0 0 0 0 0 0 0 1.0 0.05%

NA
Data 0 0 0 0 0 0 0 1.0 (17/17)

Margin
totals 1 0 1 5 12 13 17
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TABLE B3

a: K = 5, 25 Cases

P C = 0 C = 1 C = 2 C = 3 C = 4 C = 5
Statistical

Significance

16/32
Random 14.01% 0.000000% 0 0 0 0 P < .001

(right shift)Data 0 1.0 (1/1) 0 0 0 0
17/32

Random 1.0 26.33% 0.0000125% 0.000000% 0 0 0 P < .001
Data 0 0 1.0 (1/1) 0 0 0 (right shift)

24/32
Random 0.987 0.485% 0.013 0.006% <0.001 0.0000025% 0 0 0 P < .001

(right shift)Data 0.50 (1/1) 0 0.50 (/1) 0 0 0
25/32

Random 0.968 0.152% 0.032 0.005% <0.001 0.000025% 0 0 0 P < .001
(right shift)Data 0 0 1.0 (1/1) 0 0 0

26/32
Random 0.928 0.039% 0.071 0.003% 0.001 0.00005% 0 0 0 P < .001

(right shift)Data 0 0.50 (1/1) 0.50 (1/1) 0 0 0
27/32

Random 0.787 0.007% 0.200 0.001785% 0.013 0.000115% 0 0 0 P < .001
Data 0 0 1.0 (2/2) 0 0 0 (right shift)

28/32
Random 0.593 0.001% 0.317 0.000535% 0.087 0.0001475% 0.003 0.000005% 0 0 P < .09

(right shift)Data 0 0 1.0 (1/1) 0 0 0
29/32

Random 0.086 0.00007% 0.136 0.00011% 0.741 0.0006% 0.037 0.00003% 0 0 P < .001
(right shift)Data 0 0 0 1.0 (3/3) 0

30/32
Random 0.143 0.0000025% 0.143 0.0000025% 0.143 0.0000025% 0.428 0.0000075% 0.143 0.0000025% 0 P < .012

(right shift)Data 0 0 0 0 1.0 (3/3)
31/32

Random 0 0 0 0 0 0.00000149% NAData 0 0 0 0 0 1.0 (9/9)
Margin totals 1 2 7 3 3 9

b: K = 5, 23 Cases

C Random/
Data

P
Statistical

Significance
16/32 17/32 18/32 19/32 20/32 21/32 22/32 23/32 24/32 25/32 26/32 27/32 28/32 29/32 30/32 31/32

Random 0.161 0.305 0.254 0.187 0.118 0.069 0.053 0.015 0.006 0.002 0.001 0 0 0 0 0 P < 0.00
(right shift)0 13.93% 26.34% 21.98% 16.19% 10% 6.014% 2.998% 1.294% 0.475% 0.146% 0.037% .007% .001% <0.0001% <0.0001% <0.0001%

Data 0 0 0 0 0 0 0 0 1.0
(1/1) 0 0 0 0 0 0 0

Random 0 0 0 0
0.00027%

0.033
0.00084%

0.067
0.002%

0.133
0.004%

0.166
0.005%

0.20
0.006%

0.166
0.005%

0.133
0.003%

0.067
0.001785%

0.033
0.00053%

0
0.00011%

0
<0.0001%

0
<0.0001% P < 0.633

(right shift)1
Data 0 0 0 0 0 0 0 0 0 0 1.0

(1/1) 0 0 0 0 0

Random 0 0 0 0 0 0 0 0 0.006
0.0000025%

0.062
0.000025%

0.124
0.00005%

0.286
0.000115%

0.367
0.0001475%

0.149
0.00006%

0.006
0.0000025% 0 P < 0.036

(left shift)2
Data 0 0 0 0 0 0 0 0 0.143

(1/6)
0.143
(1/6)

0.143
(1/6)

0.28
(2/6)

0.143
(1/6) 0 0 0

Random 0 0 0 0 0 0 0 0 0 0 0 0 0.118
0.000005%

0.706
0.00003%

0.176
0.0000075% 0

P < 1.0003
Data 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

(3/3) 0 0

Random 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000025% 0
4 Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

(3/3) 0 NA

Random 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000000%
5 Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

(9/9)
NA

Margin
Totals 0 0 0 0 0 0 0 0 2 1 2 2 1 3 3 9
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