
48 CHAPTER 4. QUICK START EXAMPLES

Figure 4.2: The basin of attraction field of multi-value v3k3 n=6 1d CA. The lookup table
is 120201201020211201022121111 (1886122584a655 in hex). Just the 8 nonequivalent basins are
shown from a total of 23, and attractor non-equivalent states are shown as 2d patterns. State-
space=vn=36=729. Note that the overlap can be fixed with layout options (chapter 25 or
section 20.14).

4.2.3 Interactive basin of attraction field — ibaf-graph

1016

1008

1005

979

976

973

963

951

941

928

912

897

894
892
890

888

884
882
874
868

848

845835

823

813

788
786

783

777

772

735734732730708 695694

685

643

641

624

589
579

578

576

544

533

529

528

526

519

518

514

507499491

480

467459

450

427

416

403

389

388

353

344

332
323

311310
305

304

300

280

272
271

270
269

264

260

258

256

252

248

244

232

228

223221217

212

197

193

183177

156

144

136

132

130

128

120

104

97

86

83

76

75

70

68

66

65

64

63

61

58

57

53

39

36

34

33

32

30 26

24

19

17

16

9

8

4

2

Figure 4.3: An ibaf-graph of a binary 1d CA, v2k3, n=10, rule 9 with 7 basins, The basin of attrac-
tion field as in figure 4.1, but uncompressed, was transformed to its ibaf-graph, initially with scaled
nodes/links. Nodes were relabelled in basins 4 (decimal) and 5 (2d patterns). The 3rd basin was
dragged lower, expanded, and some fragments were dragged and relabelled in decimal, 1d, and 2d.
Note the sequence of decimal nodes starting at 888 (top right) which follow output arrows leading to
the attractor.

The ibaf-graph (chapter 20, section 20.6) allows rearranging an uncompressed basin of attraction

49

field computed with the exhaustive algorithm. Nodes and their attached “fragments” or whole
components (basins) can be dragged, rescaled and relabelled according to “inputs/outputs/either”
and a time-step distance, where “nolimit” combined with “either” captures a whole basin. Node
labels within a fragment can be toggled between discs/decimal/hex/1d/2d/none.

To produce and rearrange an ibaf-graph like figure 4.3, proceed as follows,

1. From the first prompt keep accepting defaults with return or the left mouse button (about
9 presses), until the Select v2k3 rcode appears. then enter d.

2. At the next decimal equivalent prompt enter 9 to select the CA rule.

3. Enter return (about 3 presses) until the top-center basin parameters banner appears, and
a top-right window with a list of options starting with accept all basin defaults. Enter g
to select graphs.

4. At the next top-right graphs prompt enter i for the ibaf-graph, then return at the
compression OFF reminder.

5. Then enter return (about 3 presses) until a basin field top-right prompt appears (just
before drawing basins).Enter e for the exhaustive algorithm (section 29.7) which is required
for the ibaf-graph.

6. At the next exhaustive pairs prompt enter return — the usual basin of attraction field
will be drawn with the default layout, or with any changes made in section 4.2.2.

7. When drawing is complete, ibaf-i appears below the green progress bar, enter i — the
ibaf-graph will be computed and drawn with the same layout above.

8. Once complete, the top-right initial options reminder appears — these apply to all
nodes/links in ibaf-graph simultaneously — for decode see section 20.9.

IBAF-graph: drag-(def) PScript-P net-# ant-a unscram-u win-w rank0-k
settings-S rot-x/X flip-h/v nodes-(/)/= links-{/} both-[/]
Unreach-U matrix-t/T nodes-n/N links-l Labels-+ arrows-A/</>
layout: file-f graph-g circle/spiral-o/O 1d/2d(tog)/3d-1/2/3 rnd-r/R quit-q:

9. Click the left mouse button (or enter return) for the drag-options, then click the center
of a node (a right click may also be required initially) to lock-on/activate — so its number
appears in the drag reminder — then drag the active node and its connected fragment with
the mouse pointer (button depressed) to another position, then release. The drag options
apply to fragments and components (basins) rooted on the active node. (see section 20.4),

node 0, eather, step=nolimit: drag-leftb PScript-P elstc/snap-d gap-g
not active?-rightb first, rot-x/X flip-h/v nodes-(/)= links-{/} both-[/] just-j
Lnk0:cut/restore-c/r Lnks0-0:cut/add/restore-C/A/R net-#
step-(1-9) nolimit-0 single-s in/out/either-i/o/e all-a exit-q:

The drag-option reminder is context dependent (explained in depth in section ??) — options
mostly work immediately by keyhits — try the following to rearrange the ibaf-graph as in figure 4.3,

i/o/e . . . for “inputs”, “outputs” or “either”, which defines the direction of links in the
fragment — “e” for “either” is the starting default.

nolimit-0 . . . enter “0” (zero — the starting default) for “nolimit” to the distance of connected
time-steps from the active node. When combined with “either” above, the frag-
ment will capture the whole basin.

step-(1-9) . . . enter 1 or a number up to 9 to limit the distance in time-steps, the reach of the
fragment from the active node — for dragging, relabelling, and to contract/expand
nodes/links.

50 CHAPTER 4. QUICK START EXAMPLES

nodes-(/)= . . . use round brackets — (to contract,) to expand, the size of nodes,
enter the equal sign “=” to toggle nodes display between discs/decimal/hex/1d/2d/none.

links-{/} . . . use curly brackets — “{” to contract, “}” to expand, the length of links — the
distance between nodes.

both-[/] . . . use square brackets — “[” to contract, “]” to expand, the size of nodes and links
at he same time.

single-s . . . enter “s” to restrict changes to the active node only — some options in the drag
reminder will change.

just-j . . . enter “j” to isolate the basin with the active node, hiding other basins. Enter “j”
again to restore.

elstc/snap-d . . . enter “d” to toggle “drag” between elastic/snap. Elastic drag is the default, but
snap, where just the active node is dragged, then its fragment snaps into place,
is nore efficient for a larger ibaf-graph.

exit-q . . . to return to the initial options. The revised layout is kept but “graph-g2 restores
the original.

4.3 Backwards space-time patterns, and state-space matrix

Figure 4.4: Backwards
space-time patterns re-
lating to the basin of
attraction field of the
v=2 CA in figure 4.1.
Space across, time top
down. The red and
white bit patterns are
the predecessors of black
and white bit patterns.

Figure 4.5: The state-apace matrix
represents state-space, plotting the
left half of each state bitstring
against the right half. Colors repre-
sent different basins of attraction in
figure 4.1.

While the attractor basins are generating, various display settings, indicated in the bottom title
bar, can be changed on-the-fly. However, basins may generate too fast to intervene on-the-fly. In
this case, at the pause when a basin is complete, enter s for speed in a top-left window, and follow
self-explanatory prompts to slow down. Alternatively, backtrack to slightly increase n, v or k.

1. Enter s to toggle the “backwards” space-time pattern on-off, and see predecessors (pre-
images) being generated on the left of the screen (figure 4.4). Initially the attractor states

